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Statistical mechanics of nonrelativistic charged particles in a constant magnetic field

Guy B. Standen and David J. Toms
Physics Department, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom

~Received 30 March 1999; revised manuscript received 12 July 1999!

The statistical mechanics of a system of nonrelativistic charged particles in a constant magnetic field is
discussed. The spatial dimensionD is arbitrary, withD>3 assumed. Calculations are presented from first
principles using the effective action method. ForD>5 the system has a phase transition with a Bose conden-
sate. We show how the effective action method deals in a very natural way with the condensate, and study its
role in the magnetization of the gas. For large values of the magnetic field we show how the magnetized gas
in D spatial dimensions behaves like the free Bose gas inD22 spatial dimensions. Even though forD53 the
magnetized gas does not have a phase transition for any nonzero value of the magnetic field, we show how the
specific heat starts to resemble the result for the free gas as the magnetic field is reduced. A number of
analytical approximations for the magnetization and specific heat are given, and compared with numerical
results. In this way we are able to study in precise detail how theB→0 limit of the magnetized gas is achieved.
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tio
m

f
e

e
te
e

ve

th
fie
an
al
a

ee
a

ci
s
e

os
za
in

e
ri

ee
-

e
sion
al

iffers
ct
-
-

d

-

tem

i-

his

-

I. INTRODUCTION

One system which has received considerable atten
consists of charged spinless bosons in a homogeneous
netic field. Initial work on the nonrelativistic case@1# was
substantially improved on by Schafroth@2#, and was then
generalized to dimensions other than three by May@3,4#.
More recently, several detailed studies have been made o
ideal system of nonrelativistic charged bosons, both num
cally @5# and from a theoretical point of view in both two@6#
and three@7–10# dimensions. Also, a detailed study of th
boson gas in three dimensions with trapping harmonic po
tials and the presence of a magnetic field has recently b
made using the path-integral formalism@11#. The behavior of
the relativistic case has also been discussed@9,12–14#.

The outline of our paper is as follows. In Sec. II we gi
a brief description of the free Bose gas inD spatial dimen-
sions. The purpose of this is to allow us to later compare
analogous results for the magnetized gas to these free
ones. Section III presents the effective action method,
and applies it to the magnetized gas. We concentrate initi
on the specific heat, and show how the presence of the m
netic field alters the behavior from that found for the fr
gas. We study numerically what happens for large and sm
magnetic fields. The reason for concentrating on the spe
heat is that the specific heat maximum can be used a
signature for Bose-Einstein condensation in cases wh
there is no phase transition. This was used by Pathria@15# in
finite volume systems, and more recently for confined B
gases@16,17#. Results are also obtained for the magneti
tion. In Sec. IV we describe how it is possible to obta
analytical results for the critical temperature~when D>5),
the magnetization, and the specific heat when the magn
field is weak. We are able to analytically confirm the nume
cal results concerning the limitB→0. For theD53 gas we
give approximations valid at the critical temperature for fr
Bose gas.~Previous approximations were only valid for tem
peratures larger than this.!
PRE 601063-651X/99/60~5!/5275~12!/$15.00
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II. BOSE-EINSTEIN CONDENSATION
WITH NO EXTERNAL FIELD

In this section we wish to review very briefly some of th
basic properties of the free Bose gas. The spatial dimen
D will be arbitrary. Although there may be no direct physic
relevance to cases withD.3, it is still instructive to study
these cases because the nature of the phases transition d
from the D53 situation. It also allows us to make conta
with previous work forDÞ3. ForD53 the analysis is stan
dard textbook material@18–21#. The absence of Bose
Einstein condensation whenD52 is also widely known
@22,3#. Spatial dimensionsD.3 have also been studie
@23,24#.

We will consider an ideal gas ofN spinless bosons con
fined in a large box of volumeV in D spatial dimensions.
The infinite volume limit will be taken withN5N/V fixed,
as is conventionally done. The energy levels of the sys
are

Eni
5

1

2m (
i 51

D S 2pni

Li
D 2

~2.1!

before the infinite volume limit is taken if we impose per
odic boundary conditions on the field. We set\51 through-
out the paper. In Eq.~2.1!, ni50,61,62, . . . , andLi is the
length of the box in thei th direction. In Sec. III we will show
how the effective action formalism can be used to study t
problem~see Refs.@8,25,26# for reviews!. For now we stick
with the conventional thermodynamic expressions.

The internal energy is given by

U5(
ni

Eni

~eb(Eni
2m)21!

, ~2.2!

wherem is the chemical potential, andb5T21 in units with
the Boltzmann constantkB51. The grand canonical en
semble is used here.
5275 © 1999 The American Physical Society
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By taking the infinite volume limit, we can replace th
sums in Eq.~2.2! overni with integrals. After expanding the
denominator of Eq.~2.2! in a geometric series, and using E
~2.1! for the energy levels, the integrals overni may be per-
formed with the result

U5
D

2
bVS m

2pb D D/2

Li (D12)/2@ebm#. ~2.3!

We have defined the polylogarithm function Lip@z# by

Li p@z#5 (
k51

`
zk

kp
. ~2.4!

We note the property~assumingp.1)

Li p@1#5zR~p!, ~2.5!

wherezR(p) denotes the Riemannz function.
The essential feature of Bose-Einstein condensation

phase transition is exhibited in the behavior of the spec
heat. The specific heat at constant volumeCv is defined by

Cv5S ]U

]T D
V,N

52b2S ]U

]b D
V,N

. ~2.6!

The particle numberN, given by

N5VS m

2pb D D/2

LiD/2@ebm#, ~2.7!

is held fixed when computing the derivative in Eq.~2.6!. The
chemical potential is not fixed. From Eqs.~2.3! and~2.6! we
find

Cv5VS m

2pb D D/2FD~D12!

4
Li (D12)/2@ebm#

2
D

2
b~bm!8LiD/2@ebm#G . ~2.8!

Here 8 denotes the derivative with respect tob, holding V
andN fixed. To calculate (bm)8 we differentiate both sides
of Eq. ~2.7! to give

~bm!85
D

2b

LiD/2@ebm#

Li ~D22!/2@ebm#
. ~2.9!

Substitution of Eq.~2.9! into Eq. ~2.8!, and use of Eq.~2.7!,
shows that

Cv

N
5

D~D12!

4

Li ~D12!/2@ebm#

LiD/2@ebm#
2

D2

4

LiD/2@ebm#

Li ~D-2!/2@ebm#
.

~2.10!

If we confine ourselves toD>3, as we do for the rest o
the paper, then a critical temperatureT0 can exist at which
the chemical potentialm50. From Eq.~2.7!, we find
a
c

T05S 2p

m D F N

VzRS D

2 D G 2/D

. ~2.11!

For T,T0 the chemical potential remains fixed atm50. It is
easy to see that Eq.~2.10! only holds forT.T0. When T
,T0, the specific heat may be evaluated from Eq.~2.8! by
setting the term with (bm)8 to zero and alsom to zero. This
results in

Cv

N
5S b0

b D D/2D~D12!

4

zRS D12

2 D
zRS D

2 D ~2.12!

for T,T0.
The two expressions~2.10! and ~2.12! may be used to

compute the specific heat for all temperatures, and als
study the behavior atT5T0. It is easy to see from the poly
logarithm function~2.4! that if p<1, Lip@z#→` as z→1.
This means that the second term of Eq.~2.10! vanishes as
m→0 for D53 and 4, but is finite forD>5. Thus the spe-
cific heat is continuous atT5T0 for D53 and 4, but discon-
tinuous atT5T0 for D>5. The discontinuity forD>5 is
easily computed in terms of Riemannz functions. The con-
tinuity of Cv for D53 is well known@18–21#. The behavior
for D.3 can be found in Refs.@23,24#.

III. BOSE –EINSTEIN CONDENSATION
IN A CONSTANT EXTERNAL MAGNETIC FIELD

When a magnetic field is applied to a gas of charg
bosons in three spatial dimensions the energy spectrum~in
the infinite volume limit! contains a discrete harmonic
oscillator-like part as well as a continuous part. The discr
part is just the Landau level quantization@27#. For D.3
there may be a number of discrete components because
magnetic field is not described by a vector, but by an a
symmetric tensor with more than one independent com
nent @28#. For simplicity we will restrict our attention to the
case of only a single nonzero component in the present
per. We wish to provide a similar treatment to that for t
free Bose gas when a nonzero magnetic field is presen
particular we will study the specific heat, and see how
presence of a magnetic field alters the behavior from t
found for the free Bose gas in Sec. II. Also we will compu
the magnetization and study the Meissner-Ochsenfeld ef
in detail. The formalism used is the effective action meth
as reviewed in Refs.@25,26#. This formalism allows the non-
zero condensate~if there is one! to be treated in a very natu
ral manner.

A. Thermodynamic potential and phase transitions:
General formalism

The thermodynamic potential is usually defined by

VTÞ05
1

b (
n

ln@12eb(En2em)#. ~3.1!
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However, in the effective action method there is another te
present if there is a nonzero condensate described by a b
ground fieldC̄. This is

V (0)5E dDxH 1

2m
uDC̄u22emuC̄u2J . ~3.2!

HereDC̄5“C̄2 ieAC̄ is the usual gauge-covariant deriv
tive. The complete thermodynamic potential is

V5V (0)1VTÞ0 . ~3.3!

~Actually, if we are interested in the dynamics of the ma
netic field there will be an additional term involving a Ma
well action. We will consider this in Sec. III D below.!
Given the thermodynamic potential, all quantities of inter
can be calculated.

The presence of a condensate is signalled by a non
value forC̄. This is associated with symmetry breaking,
discussed in the relativistic case@29,30#. In our caseC̄ must
satisfy

dV

dC̄
505

1

2m
D2C̄1emC̄. ~3.4!

We can solve this by expandingC̄(x) in terms of the sta-
tionary state solutions to the Schro¨dinger equation:

21

2m
D2f n~x!5Enf n~x!. ~3.5!

If we write

C̄~x!5(
n

Cnf n~x! ~3.6!

for some coefficientsCn , and assume that the set of sol
tions f n(x) forms a complete set, then Eq.~3.4! results in

05~En2em!Cn . ~3.7!

We will define a critical value ofm, saymC , by

emC5E0 , ~3.8!

whereE0 is the lowest energy level. Ifm,mC , then the only
solution to Eq.~3.7! is for Cn50, which corresponds toC̄
50. There is no condensate in this case associated with s
metry breaking and a phase transition. However ifm can
reach the valuemC defined in Eq.~3.8! for some temperature
TC , thenC0 in Eq. ~3.7! is undetermined and we can have
nonzero condensate described by

C̄~x!5C0f 0~x!. ~3.9!

The temperatureTC at which m5mC is called the critical
temperature.

For the case of the free gas considered in Sec. II we h
E050, so thatmC50. The critical temperatureTC is then
the value of the temperature at which the chemical poten
vanishes, as stated earlier. If the spatial dimensionD>3, a
critical temperature exists and signals a phase transition
m
ck-

-

t

ro

m-

ve

al

th

a nonzero value forC̄ (C̄ is constant for the free Bose gas!.
Associated with this phase transition is a growth in the nu
ber of particles in the ground state.

For some systems it is possible to have a sudden gro
in the occupancy of the ground state without a phase tra
tion. In this casem never reaches the critical value ofmC ,
but instead approaches it asymptotically. The speed at w
the ground state particle number builds up depends on
fastm approachesmC . Becausem never reachesmC we have
C̄50, and no symmetry breaking. As we will see below, f
a charged Bose gas in a constant magnetic field the sp
dimensionD determines whether or not a phase transit
occurs.

We can use our expression~3.3! for V to find the total
chargeQ, since Q52]V/]m with V, B, b, and C̄ held
fixed. It is convenient to write

Q5Q01Q1 , ~3.10!

where

Q052
]V (0)

]m
5eE dDxuC̄u25euC0u2, ~3.11!

if we use Eqs.~3.2! and ~3.9!, and

Q152
]VTÞ0

]m
. ~3.12!

From Eq.~3.1!, we find

Q15e(
n

1

@eb(En2em)21#
. ~3.13!

If we can always solveQ5Q1 for m for all temperatures,
then C̄50. There is no condensate, symmetry breaking,
phase transition in this case. If it is not possible to solveQ
5Q1 for m, then we must haveQ0Þ0 and find a nonzero
value forC̄.

B. Thermodynamic potential: Constant magnetic field

The formalism outlined in Sec. III A will now be applied
to the D-dimensional charged Bose gas in a constant o
component magnetic field. We will assumeD>3 here, and
pick the magnetic field in thez direction. It is possible to
solve Eq. ~3.5! for the energy levels and correspondin
eigenfunctions@27#. We have~choosing\5c51)

En,ki
5S n1

1

2Dv1
1

2m (
i 53

D S 2pki

Li
D 2

, ~3.14!

where n50,1, . . . labels the Landau level, andki50,
61, . . . if weimpose periodic boundary conditions on a b
as in Sec. II. We have defined

v5
eB

m
. ~3.15!

The energy level~3.14! is degenerate with degeneracy
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g5
eBL1L2

2p
. ~3.16!

As in Sec. II we will be interested in the large box lim
with Li→`. In this limit we can replace the sums overki
resulting when Eq.~3.14! is used in Eq.~3.1! with integrals.
A change of variables gives

VTÞ05
eBV

2pb (
n50

` E dD22k

~2p!D22

3 ln$12e2b[(n11/2)v1(k2/2m)2em]%. ~3.17!

This may be evaluated by expanding the logarithm in
Taylor series, and then performing the integral overk. We
find

VTÞ052vVS m

2pb D D/2

(
l 51

`
l 2D/2e2 lb[(v/2)2em]

~12e2 lbv!
.

~3.18!

At this stage it is useful to define a dimensionless te
perature. We define

x5bv. ~3.19!

x is seen to be the ratio between the energy gap betw
successive energy levelsv and the thermal energykBT. The
lowest energy level from Eq.~3.14! is E0,05v/2. From Eq.
~3.8!, the critical value form is

emC5
v

2
. ~3.20!

We will define a dimensionless chemical potential« by

em5vS 1

2
2« D . ~3.21!

A phase transition is characterized by a critical tempera
TC at which«50. Expression~3.18! may be written in terms
of the dimensionless variablesx and«:

VTÞ052vVS m

2pb D D/2

(
l 51

`
l 2(D/2)e2 l«x

~12e2 lx!
. ~3.22!

It is convenient to introduce some compact notation for
class of sums we will encounter in order to simplify form
las. Let

Sk@a,d#5(
l 51

`
l a/2e2 lx(«1d)

~12e2 lx!k
. ~3.23!

With this notation we may write Eq.~3.22! as

VTÞ052vVS m

2pb D D/2

S1@2D,0#. ~3.24!

Various thermodynamic quantities involve derivatives of t
thermodynamic potential. We will initially consider th
charge.
s

-

en

re

e

From Eq.~3.12!, using Eq.~3.24!, we have

Q15vVS m

2pb D D/2 ]

]m
S1@2D,0#

5eVS m

2pb D D/2

xS1@22D,0#. ~3.25!

Whether or not a phase transition occurs is determined by
convergence or divergence ofS1@22D,0# as «→0. If this
sum diverges as«→0, then we will always be able to solv
Q5Q1 for m. As discussed in Sec. III A this means th
there is no phase transition. From Eq.~3.23! it is easy to see
that S1@a,0# diverges as«→0 for a>22. With a52
2D, this means that there is no phase transition forD53
and 4 dimensions. ForD>5, S1@22D,0# converges as«
→0, and there is a phase transition. In this case~i.e., for
D>5) there is a nonzero condensate characterized byC̄
Þ0.

For D>5 we may use Eq.~3.9! to find C̄. If we choose
the gauge

A152By, A25•••5AD50 ~3.26!

for the vector potential, then

f 05ae2(1/2)eBy2
~3.27!

is the eigenfunction corresponding to the lowest energyE0
5v/2. a is a constant chosen to normalizef 0 . V (0) is found
by using Eq.~3.9! with Eq. ~3.27! in the general expressio
~3.2!. We will return to this when we discuss the magnetiz
tion in Sec. III D.

C. Specific heat

The internal energy is given byU5(]/]b)(bV) with
V, v, andbm held fixed. Using Eqs.~3.1!–~3.3!, we find

U5E dDxH 1

2m
uDC̄u2J 1

]

]b
~bVTÞ0!. ~3.28!

The first term accounts for any nonzero condensate, and
second term is easily seen to be

]~bVTÞ0!

]b
5(

n

En

@eb(En2em)21#
, ~3.29!

which is the usual expression for the internal energy@see Eq.
~2.2! with a different definition form#. With Eqs.~3.5! and
~3.9!, we find

U5E0uC0u21
]

]b
~bVTÞ0!. ~3.30!

If E050, then the contribution fromV (0) to the internal
energy vanishes, and the internal energy is given by the s
dard expression~3.29!. This is the situation for the free Bos
gas discussed in Sec. II. For the constant magnetic fi
E05v/2, so that ifC̄Þ0 we must include the condensa
contribution to obtain the correct expression for the ener

If we use Eq.~3.11!, then Eq.~3.30! may be written as
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U5
vQ0

2e
1

]

]b
~bVTÞ0!. ~3.31!

With Eq. ~3.24! for VTÞ0, and differentiating with respect to
b, keepingbm, v, andV fixed, results in

]~bVTÞ0!

]b
5vVS m

2pb D D/2H xS2@22D,1#1
xS1@22D,0#

2

1
~D22!S1@2D,0#

2 J . ~3.32!

Noting Eq.~3.25! allows us to write this as

]

]b
~bVTÞ0!5

vQ1

2e
1vVS m

2pb D D/2H xS2@22D,1#

1S ~D22!

2 DS1@2D,0#J . ~3.33!

Substitution of Eq.~3.33! back into Eq.~3.31!, and noting
from Eq. ~3.10! that Q5Q01Q1, where Q is the total
charge, results in

U5
vQ

2e
1vVS m

2pb D D/2H xS2@22D,1#

1S ~D22!

2 DS1@2D,0#J . ~3.34!

The expression for the internal energy we have just obtai
@Eq. ~3.34!# holds whether there is a nonzero condens
(C̄Þ0) or not. In cases where a phase transition does oc
the role of the condensate is crucial for obtaining the corr
expression for the internal energy. If we neglected the c
tribution coming fromV (0), then Eq.~3.34! would haveQ1
in place ofQ. This would then lead to an erroneous expre
sion for the specific heat, sinceQ is fixed whereasQ1 is not.

The specific heat at constant volume was defined in
~2.6!. The quantities held fixed areV, Q, C̄, and v
5eB/m when the differentiation is performed. This mea
that the first term in Eq.~3.34! makes no contribution toCv .
Just like the free Bose gas discussed in Sec. II, we m
distinguish between the expressions above and below the
critical temperature if there is a phase transition. ForD>5,
the critical temperatureTC is defined by

Q5eVS m

2pbC
D D/2

xC S
1
@22D,0#u «50,

x5xC

. ~3.35!

HerexC5bCv with bC5TC
21 , and the sumS1@22D,0# is

evaluated with«50 and x5xC . Unlike for the free Bose
gas, it is not possible to solve forTC analytically. We will
return to an approximate evaluation ofTC in Sec. IV. We
have solved Eq.~3.35! numerically to findTC . The results
for small values ofv are shown in Fig. 1. As expected, whe
v→0 we haveTC→T0.

For small values ofv, bC is close tob0 ~an approximate
analytical expression will be given in Sec. IV!. As the
strength of the magnetic field is increased, the deviation
TC from T0 becomes more pronounced, but lessens with
d
e
r,

ct
-

-

q.

st
he

f
-

creasing dimension. In all cases where a phase trans
occurs, the critical temperature is lower than the result
the free Bose gas as observed in Ref.@31#.

Let Cv
. denote the specific heat forT.TC , and Cv

, be
the specific heat forT,TC . Using Eq.~3.34! we have, after
some calculation,

Cv
.5xVS m

2pb D D/2H 2x2S3@42D,2#1x2S2@42D,1#

1~D22!xS2@22D,1#1
D~D22!

4
S1@2D,0#

2
x~D22!S2@42D,1#S1@22D,0#

S1@42D,0#

2
x2~S2@42D,1# !2

S1@42D,0#
2S D22

2 D 2 ~S1@22D,0# !2

S1@42D,0# J .

~3.36!

For T,TC we have«50 fixed. ~Equivalently,m5v/2 is
fixed.! The result of this is thatCv

, is given by

Cv
,5xVS m

2pb D D/2H 2x2S3@42D,2#

1x2S2@42D,1#1~D22!xS2@22D,1#

1
D~D22!

4
xS1@2D,0#J U

«50

. ~3.37!

By comparingCv
. in Eq. ~3.36! with Cv

, in Eq. ~3.37!, it can
be seen that whether or not the specific heat is continuou
the critical temperature is determined by the behavior
S1@42D,0# as«→0. The two expressions will only agree
S1@42D,0# diverges in this limit. From definition~3.23!
this only happens forD55 and 6~recall that we are assum
ing D>5 here so thatTC exists!. We conclude that the spe

FIG. 1. ForD>5, this shows the value ofbC compared to the
free Bose gas critical value ofb0. ForD53 and 4, because there i
no critical temperature when a magnetic field is present, we h
plotted the inverse temperature of the specific heat maximum
units of b0.
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cific heat for the charged Bose gas in a constant magn
field is continuous at the critical temperature forD55 and 6,
and discontinuous forD>7.

In the casesD53 and 4, where there is no phase tran
tion, « never vanishes. The specific heat is given by E
~3.36! in these two cases for all temperatures. WhenD53
and 4 the specific heat is a perfectly smooth function
temperature.

Graphs showing the specific heat forD53 and 5 are
shown in Figs. 2 and 3. (D55 is chosen to illustrate the
higher dimensional results, as one example where the f
field gas has a discontinuous specific heat.!

For D53, the presence of the magnetic field is seen
Fig. 2 to round off the familiar sharp behavior at the tran

FIG. 2. This shows the specific heat at constant volume in u
of the total number of particles as a function of the inverse te
perature in units ofb0 whereb05T0

21, with T0 given in Eq.~2.11!
for D53. For comparison, the free gas result is also shownv
50).

FIG. 3. The specific heat at constant volume in units of the to
number of particles for the magnetized gas withD55. The curves
are given as a function ofb5T21 in units of b0 rather thanbC .
The discontinuous free gas result is labeledv50.
tic

-
.

f

e-

n
-

tion temperature for the free gas.~The result inD54 is
qualitatively similar.! As the magnetic field is reduced th
curves for the specific heat tend toward the free-field res
The maximum in the specific heat becomes sharper, and
temperature at which the maximum occurs tends toward
value T0 as the magnetic field is reduced. ForBÞ0, al-
though there is no phase transition characterized by a cri
temperature and a nonzero condensate, asB is reduced the
specific heat starts to look more and more like the free
result. We will look at this analytically in Sec. IV. Asb
→0 ~or T→`) the specific heat forD53 approaches the
classical Maxwell-Boltzmann result of 1.5.

The behavior of the specific heat asB is increased is also
of interest. Increasing the value ofB tends to reduce the
specific heat maximum and to broaden the curves. In fact,
large values ofB, if we examine Fig. 2 it can be seen that th
curves approach the value of1

2 asB is reduced before rising
sharply to the classical result of3

2 . This demonstrates that th
specific heat for the gas withD53 resembles the specifi
heat for the free gas withD51 in a strong magnetic field
The value of1

2 is the classical value for the one-dimension
gas. This is totally consistent with the approach used in R
@32,33#, in which the leading behavior of thermodynam
quantities was studied in a general setting by using the l
est energy solutions. AsB is increased, the gap between th
ground state and the excited states becomes larger; thu
leading contribution would be expected to come from t
ground state.

The results for the specific heat of the five-dimensio
gas are shown in Fig. 3. In this case the specific heat for
free Bose gas is discontinuous. Nevertheless, as the mag
field is reduced the specific heat curves approach the free
result. The peaks of the specific heat start to become sha
and the slope of the curve steeper. The classical Maxw
Boltzmann result of52 is reached asb→0. Just as for the
caseD53, the gas exhibits a reduction in the effective d
mension for large values of the magnetic field. This time
would expect to find the specific heat curves looking mo
and more like the familiar form for the specific heat of th
free gas in three spatial dimensions, and this is what is fo
if the numerical results of Fig. 3 are studied closely.

D. Magnetization

Even though forD53 there is no phase transition whic
can be associated with Bose-Einstein condensation,
studying the magnetization of the charged gas Schafroth@2#
showed that the gas exhibited the Meissner-Ochsenfeld
fect. The generalization to other spatial dimensions was p
formed later@3–10,33#. We will show how the formalism
described in Sec. III A can be used to obtain the magnet
tion. In particular, the role of the condensateC̄ for D>5
will be examined carefully.

The simplest way to see the effects of magnetization is
studying how the field equations for electromagnetism
affected. To do this we must include a term in the therm
dynamic potential~3.3! for the electromagnetic field. We
will use Heaviside-Lorentz rationalized units as usual
quantum field theory.~A discussion of the various units an
how this alters the expression for the magnetization w
given in Ref. @33#. Of course the physics of the situatio
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should be independent of this arbitrary choice.! We add

Vem5E dDxS 1

4
Fi j F

i j 2Jext
i Ai D ~3.38!

to Eq. ~3.3!, whereFi j 5] iAj2] jAi is the field strength ten
sor describing the magnetic field, andJext

i is the externally
applied current which is responsible for setting up the m
netic field. The complete thermodynamic potential is

V5Vem1V (0)1VTÞ0 ~3.39!

whereV (0) andVTÞ0 are given in Eqs.~3.1! and ~3.2!.
Variation of V with respect to the magnetic fieldFi j re-

sults in

] jH
i j 5Jext

i , ~3.40!

where

Hi j 5Fi j 12
d

dFi j
~V (0)1VTÞ0!. ~3.41!

Hi j is the D-dimensional analog of the usual vectorH in
three-dimensional electromagnetism. As explained earlie
is necessary to treat the magnetic field as a tensor ifDÞ3.
For more details of this analysis, see Ref.@26#.

We have treated the magnetic field generally in E
~3.38!–~3.41!. Specializing now to a single component fie
of strengthB(F1252F215B), Eq. ~3.41! can be written as

H5B2M , ~3.42!

where

M52
d

dB
~V (0)1VTÞ0!, ~3.43!

and H1252H215H. Equation ~3.42! is the conventional
B-H relation found in three spatial dimensions, but with t
notation defined here it can be seen to hold for allD. M in
Eq. ~3.43! is the magnetization. This approach is seen
avoid any ambiguity between what Schafroth called the a
ing and microscopic fields.

We can now splitM in Eq. ~3.43! into two pieces in an
obvious way. The derivative in Eq.~3.43! is a functional
derivative, and becauseB is a constant for our problem w
can define

M (0)52
1

V

]V (0)

]B
, ~3.44!

MTÞ052
1

V

]VTÞ0

]B
. ~3.45!

MTÞ0 is easily computed, using Eq.~3.24!, to be

MTÞ05
e

m S m

2pb D D/2H S1@2D,0#

2
x

2
S1@22D,0#2xS2@22D,1#J . ~3.46!
-

it

.

o
t-

Recalling Eq.~3.25!, we have

MTÞ052
1

2m

Q1

V
1

e

m S m

2pb D D/2

3$S1@2D,0#2xS2@22D,1#%. ~3.47!

In cases where no phase transition occurs, we haveQ1
5Q, so that the first term of Eq.~3.47! is constant. Also if
C̄50 thenM (0)50, so that the total magnetization is give
by Eq. ~3.47! with Q15Q.

When a phase transition does occur we needM (0). With
our gauge choice@Eq. ~3.26!#, and using Eq.~3.2! for V (0),
we find

M (0)52
e2B

mVE dDxy2uC̄u2. ~3.48!

C̄ was given by Eq.~3.9! with Eq. ~3.27!. It is easy to show
that

E dDxy2u f 0u25
1

2eB
, ~3.49!

which results in

M (0)52
e

2mV
uC0u252

Q0

2mV
~3.50!

after using Eq.~3.11!. We may now combine Eqs.~3.47! and
~3.50! to read

M52
Q

2mV
1

e

m S m

2pb D D/2

$S1@2D,0#2xS2@22D,1#%,

~3.51!

sinceQ5Q01Q1 is the total charge.
The result in Eq.~3.51! is the exact expression for th

magnetization, which holds even if there is a phase tra
tion. Had the condensateC̄ been ignored, we would hav
obtained Eq.~3.47! rather than Eq.~3.51!. In the true expres-
sion ~3.51! the first term is constant, whereas in Eq.~3.47!
the first term is not constant if there is a phase transiti
Thus neglect of the condensate forD>5 would lead to an
erroneous result for the magnetization.

The dimensionless magnetizationM5mVM/Q is shown
for D53 in Fig. 4. The zero-field spontaneous magnetizat
plotted on the graphs is of the form given originally by Sch
froth @2#,

M52
Q

2mVF12S T

T0
D D/2G , ~3.52!

~with D53) and it can be seen that as the fieldB→0, this
limit is recovered. As the number of dimensions increas
the diamagnetism due to macroscopic occupation of the l
est Landau level in the low temperature~high b/b0) region
becomes more pronounced. The general behavior of
magnetized gas is similar in cases when a phase transitio
absent (D,5) or present (D>5).
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IV. ANALYTICAL EXPANSIONS

So far we have presented mainly the results obtained f
numerical evaluations of sum~3.23!, since it is not possible
to obtain exact results. However due to the form of the
ponential involvinge2 lx, in order to obtain reliable numeri
cal results directly from Eq.~3.23! it is necessary to include
an increasing number of terms asx decreases. In this sectio
we will discuss a reliable method for obtaining approxima
analytical expressions for various situations when« andx are
small by finding asymptotic expansions forSk@a,d#.

The basic method we will use here involves the Mell
Barnes contour integral representation for the exponen
function:

e2v5E
c2 i`

c1 i` du

2p i
G~u!v2u. ~4.1!

Herec is a constant with Rec.0, so that the contour lies to
the right of the poles of the gamma function. This is ess
tially equivalent to the method used by Robinson@34# to
obtain asymptotic expansions for the Bose-Einstein fu
tions. It was used for the three-dimensional magnetized
by Daicic and Frankel@9#, and was used to discuss Bos
Einstein condensation in a harmonic oscillator potential
Ref. @17#. There are various ways in which Eq.~4.1! can be
used to obtain expansions over a range ofx and «, as dis-
cussed in Refs.@17,26#. We will content ourselves with the
simplest presentation here.

The basic method is to use Eq.~4.1! to convert Eq.~3.23!
into a contour integral. The contour may be closed in the
hand side of the complex plane, and the result evaluated
the residue theorem. The even and odd spatial dimens
differ somewhat in the pole structure of the integrand. T
net result is an asymptotic series forSk@a,d# which can be
used to approximate the specific heat, magnetization,
other thermodynamic quantities. The details of these ca
lations are lengthy and only the relevant results will be p
sented here. The reader interested in details can consult
@35,36#.

FIG. 4. The dimensionless magnetizationM5mVM/Q for the
charged Bose gas in three spatial dimensions.
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A. Critical temperature

For D>5 the magnetized Bose gas is characterized b
well defined critical temperatureTC which satisfies Eq.
~3.35!. It is not possible to evaluateTC in a closed form.
However, we can use our asymptotic expansion ofS1@2
2D,0# to obtain an approximate result for weak magne
fields. We have

Q.eVS m

2pbC
D D/2H zRS D

2 D1
xC

2
zRS D22

2 D1•••J
~4.2!

if only the two leading terms are included. This assum
xC!1. With the free Bose gas critical temperature defin
by

Q5eVS m

2pb0
D D/2

zRS D

2 D , ~4.3!

we find

0.F12S bC

b0
D D/2GzRS D

2 D1
xC

2
zRS D22

2 D . ~4.4!

SincexC is assumed small we see thatbC.b0. It is easy to
show from Eq.~4.4! that

TC.T02
1

D

zRS D22

2 D
zRS D

2 D
eB

m
~4.5!

to leading order ineB/m. This shows thatTC→T0 as B
→0. Furthermore, for a fixed charge density, the critic
temperature is lower when a nonzero magnetic field
present. This is consistent with our earlier numerical resu

A cruder estimate ofTC was given in Ref.@31#, which had
the same linear behavior as in Eq.~4.5! but with a different
numerical factor in front ofB. Our result@Eq. ~4.5!# is a
special case of the multicomponent magnetic field presen
in Ref. @26#.

It is possible to improve on the linear approximation
Eq. ~4.5! by working consistently to higher order in the e
pansions. It is necessary to deal withD55 and 6 separately
from D.6 because of the order of the terms retained. F
D55, we find

TC

T0
.12

1

5

zRS 3

2D
zRS 5

2D x02
1

5p1/2

zRS 3

2D
zRS 5

2D x0
3/21O~x0

2!.

~4.6!

It is worth remarking that the result given by May@4# is only
correct if it is taken to linear order inB.

We can also obtain an approximate expression for
charge in the condensate whenT<TC for D>5. WhenT
<TC we have«50, so Eq.~3.25! gives us

Q15eVS m

2pb D D/2

xS1@22D,0#u«50 . ~4.7!
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By using Eq.~3.35!, which defines the critical temperatur
TC , we find ~noting x5bv, xC5bCv!

Q15QS xC

x D (D22)/2 S1@22D,0#u«50

S1@22D,0#u «50,
x5xC

. ~4.8!

From Eq.~3.10!, we find that the charge in the condensate

Q05QH 12S xC

x D (D22)/2 S1@22D,0#u«50

S1@22D,0#u «50
x5xC

J . ~4.9!

This result is exact. If we now use the approximate analyt
expressions forS1, we obtain

Q05QH 12S xC

x D D/2

2
1

2 S xC

x D D/2 zR S D22

2 D
zR S D

2 D ~x2xC!J .

~4.10!

It is worth remarking that the accuracy of any of our appro
mate expressions can be increased by simply including m
terms.

From Eq. ~4.10!, we see that asv→0 becausexC /x
5T/TC , and we know thatTC→T0, we recover the free
Bose gas result

Q05QF12S T

T0
D D/2G . ~4.11!

The term in Eq.~4.10! which involvesx2xC represents the
lowest order correction to the free field result in a we
magnetic field.

In Fig. 5 we plot the free gas result@Eq. ~4.11!#, the exact

FIG. 5. The ratio of the charge contained in the ground s
over the total charge for~i! the free gas@Eq. ~4.11!#, ~ii ! the exact
result ~4.9!, and ~iii ! the approximation~4.10! ~for D55 and v
51).
s

l

-
re

numerical result, and our approximation~4.10! for the case
D55. It can be seen that Eq.~4.10! is very close to the true
result.

B. Magnetization for D>5

The magnetization may be evaluated using Eq.~3.51!. It
is necessary to distinguish the casesD53 and 4 for which
no phase transition occurs fromD>5. We will deal with
D>5 in this section, leavingD53 and 4 until later. With
D>5 we must deal withT>TC andT<TC since the chemi-
cal potential is different in the two cases. For simplicity w
will only give the expressions forT<TC . WhenT>TC we
have«Þ0 and the results are more complicated. In additi
the expansions break down once« grows too large.

For T<TC we use Eq.~3.51! with «50:

M52
Q

2mV
1

e

m S m

2pb D D/2

3$S1@2D,0#2xS2@22D,1#%u«50 . ~4.12!

This can be rewritten if we eliminate (m/2p)D/2 using Eq.
~3.35!. We find

M52
Q

2mVH 122S T

TC
D D/2

3
S1@2D,0#2xS2@22D,1#u«50

xCS1@22D,0#u «50,
x5xC

J ~4.13!

It is now a straightforward but tedious matter to expand
sums.

For D55 the asymptotic expansion of the magnetizati
is given by

M52
Q

2mVH 12S T

TC
D 5/2

2S T

TC
D 5/2

3S x

3
2

xC

2 D zRS 3

2D
zRS 5

2D 1•••J . ~4.14!

By taking B→0 we are left with the spontaneous magne
zation

M ~B→0!.2
Q

2mVF12S T

T0
D 5/2G ~4.15!

sinceTC→T0 in this limit. This is the five-dimensional ver
sion of Schafroth’s result, and agrees with May@4#. When
BÞ0 there are corrections to the Schafroth form as sho
by the third term in Eq.~4.14!. There are two sources fo
these corrections. The first is that forBÞ0 andTCÞT0. The
second is that the asymptotic form ofM has higher order
terms present. The fact thatM does not vanish asB→0
shows that the Meissner-Ochsenfeld effect exists.
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We can also compare our result with that given by M
@4#. To do this we must replaceTC in Eq. ~4.14! with T0. We
will only work to first order in the magnetic field and use E
~4.14!. It is easily shown that

M.2
Q

2mVH 12S T

T0
D 5/2

2
1

3 S T

T0
D 5/2 zRS 3

2D
zRS 5

2D x1•••J .

~4.16!

This agrees with May’s result, where a different method w
used. There are two comments to make here. The first is
had we taken the expansion beyond linear order inx the
results obtained would not agree with that of May’s meth
for reasons already mentioned. Second, care must be e
cised in using Eq.~4.16! because we have assumedT<TC in
its derivation. This means that Eq.~4.16! does not hold at
T5T0, as can be seen from Eq.~4.5!. If we setT5T0 in Eq.
~4.16!, we would conclude thatM was positive, leading to
paramagnetic rather than diamagnetic behavior. This
clearly wrong. We will return to results forT5T0 later.
There is, of course, nothing wrong with takingT5TC in Eq.
~4.14!.

C. Specific heat

In a similar manner to Sec. IV B, analytical expansio
may be obtained for the specific heat capacities in the dim
sions of interest to us in this paper. It is more convenien
express these results in the form they were given previou
i.e., as expansions of the ratioCv /N. These expansions ar
constructed from the expression for the heat capacity@either
Eq. ~3.36! if above the transition temperature, or Eq.~3.37! if
below it# as well as that for the number density@obtained
from Eq. ~3.25! asN5Q/e# .

For D53 from Fig. 2, it can be seen that the charg
Bose gas in three spatial dimensions does not exhibit a p
transition with finite field, but approaches the zero field
sult in theB→0 limit. The maximum of the heat capacity
always lower than the zero field limit, a fact which ca
clearly be seen from the analytic expansion

Cv

N
.

15zRS 5

2D
4zRS 3

2D 2
3x1/2

4ApzR
2 S 3

2D zHS 3

2
,« D F6zR

3 S 3

2D

15pzRS 5

2D zHS 1

2
,« D zHS 3

2
,« D G1O~x!.

The five-dimensional gas is the first to show the existe
of a phase transition, and as previously discussed in
III C, it is necessary to use different expressions for the h
capacity above and below the critical temperature. FoT
.TC , this quantity is given by
s
at

d
er-

is

n-
o
ly,

se
-

e
c.

at

Cv

N
.

35zRS 7

2D zRS 3

2D225zR
2 S 5

2D
4zRS 3

2D zRS 5

2D

1

25p1/2x1/2 zHS 1

2
,« D zRS 5

2D
4zR

2 S 3

2D 1O~x3/2!,

while belowTC Eq. ~3.37! must be used, and hence

Cv

N
.

35zRS 7

2D
4zRS 5

2D 1

xS 15zR
2 S 5

2D235zRS 3

2D zRS 7

2D D
8zR

2 S 5

2D 1O~x3/2!.

~4.17!

D. Expansions forT near T0

As noted in Schafroth’s original paper@2# the approxima-
tion ~for the three-dimensional gas!

M.2
Q

2mVF12S T

T0
D 3/2G ~4.18!

will break down whenT becomes too close toT0. This can
be substantiated by a direct numerical evaluation ofM and
comparison with Eq.~4.18!, as we showed in Ref.@37#. The
Schafroth criterion for validity of Eq.~4.18! can be derived
in a simple manner, as described in Ref.@9#. An obvious
question to ask is that if Eq.~4.18! does not hold asT be-
comes close toT0, is there another simple approximatio
which can be used? This was first studied by Daicic a
Frankel@9#, who showed by expanding aboutm50 that the
magnetizationM.2cB1/2, with c.0 a constant. This ap
proximation was valid for values ofT closer toT0 than Scha-
froth’s approximation, but still broke down asT→T0. In
Ref. @37# we showed how it was possible to evaluate t
magnetization in a temperature range which includedT
5T0. In this section we will present the details of this resu
and generalize the analysis to spatial dimensionsD.3.

For D53 the critical temperatureT0 for the free Bose gas
is defined by

Q5eVS m

2pb0
D 3/2

zRS 3

2D , ~4.19!

whereb05T0
21. For BÞ0 we have

Q5eVS m

2pb D 3/2

xS1@21,0#. ~4.20!

Equating these two expressions gives

xS1@21,0#5S x

x0
D 3/2

zRS 3

2D , ~4.21!

wherex05b0v. The aim now is to solve this for« when the
magnetic field is weak andT is close toT0 ~meaningx is
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close tox0). Because we assume a weak magnetic field,
may use the first few terms in the asymptotic expansion
S1@21,0#:

S x

x0
D 3/2

zRS 3

2D.zRS 3

2D1~px!1/2zHS 1

2
,« D

1zRS 1

2D S 1

2
2« D x1••• . ~4.22!

Higher order terms could easily be included to improve
accuracy of the result.

Suppose that we concentrate first onT5T0. Call the
value of« at T5T0 , «0. Then Eq.~4.22! gives us

05zHS 1

2
,«0D1p21/2zRS 1

2D S 1

2
2«0D x0

1/21••• .

~4.23!

~The next term is of orderx3/2.) If we let B→0, thenx0
5b0v→0. Thus asB→0 we must have«0→a, wherea is
defined by

05zHS 1

2
,aD . ~4.24!

The value ofa can be found numerically, with the resulta
50.302721829 . . . . We have verified this by solving Eq
~4.21! numerically for decreasing values ofB, and found that

«→a as B is reduced. Becausem5v( 1
2 2«) this result is

still consistent with the expectation thatm→0 asB→0. We
have essentially determined how fastm vanishes asB→0.

For small, but nonzero, values ofB, we can try to solve
Eq. ~4.23!. In order to obtain a consistent expansion from E
~4.23!, it is fairly clear that we must have

«0.a1a1x0
1/21a2x01••• ~4.25!

for some coefficientsa1 ,a2 , . . . which can be found by sub
stituting Eq.~4.25! into Eq. ~4.23! and working to a consis
tent order inx0. It is easily shown that

zHS 1

2
,«0D.2

1

2
a1x0

1/2zHS 3

2
,aD1O~x0!. ~4.26!

Use of Eqs.~4.25! and ~4.26! in Eq. ~4.23! fixes

a15

2zRS 1

2D
p1/2zHS 3

2
,aD S 1

2
2aD . ~4.27!

It should be clear how we can obtain an approximation
«0 to any order inx0 by extending the procedure we hav
just described to higher order.

So far we have just concentrated on the evaluation of« at
the single temperatureT0. Suppose that we now extend th
to temperatures which are close toT0. By a simple extension
of the analysis just presented, it is possible to show
e
f

e

.

r

«.a1a1x0
1/21

6zRS 3

2D
p1/2zHS 3

2
,aD x0

21/2F12S x

x0
D 1/2G1•••.

~4.28!

Consistency of this expansion requires

12S x

x0
D 1/2

!x0
1/2. ~4.29!

In particular, the approximation is good atx5x0.
The approximation we have found for« may now be used

in the expressions for the specific heat and the magne
tion. For the specific heat atT5T0, we find

Cv

N
.

15zRS 5

2D
4zRS 3

2D 2x0
1/2

9zRS 3

2D
2p1/2zHS 3

2
,aD 1O~x0!. ~4.30!

This shows that asB→0 the specific heat approaches t
free-field result atT5T0, confirming analytically the trend
we found numerically. It also provides an analytic proof th
for small x0, the presence of the magnetic field lowers t
value of the specific heat from the free-field value.

For the magnetization we find~at T5T0)

M.2
Q

2mVH 6p1/2zHS 2
1

2
,aD

zRS 3

2D x0
1/2

22

zHS 1

2D
zRS 3

2D S 1

6
2a1a2D x01•••J . ~4.31!

This provides confirmation of theM.2cB1/2 magnetization
law of Daicic and Frankel@9#, but at a lower temperature
~and therefore the coefficient ofB1/2 differs from that of@9#!.
In addition, we have computed the next order correction
the leadingB1/2 behavior. It is straightforward to extend th
analysis to cases other thanD53 @35,36#.

V. DISCUSSION AND CONCLUSIONS

This paper has studied the thermodynamic properties
the ideal charged Bose gas in some detail. Spatial dim
sions withD>3 have been examined, since even for the f
gas it is known that the properties of the gas are sensitiv
the spatial dimension. The specific heat was calculated
merically as well as analytically, for small values of the ma
netic field. We also performed calculations of the magne
zation and showed how the effective action method could
used to account for the condensate whenD>5.

One motivation for our study was to understand in mo
detail the behavior of the magnetized gas forD53. When a
magnetic field is present, no matter how small, there is
phase transition; however, when there is no magnetic fi
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the system does exhibit a phase transition with a nonz
condensate. On physical grounds we would expect that t
should be some sense in which the system in a small m
netic field should behave in almost the same way as the
gas. By examining the specific heat it is possible to see
as the magnetic field is reduced, the curves start to resem
the specific heat for the free gas. So long as the magn
field remains nonzero the specific heat is always smo
with the specific heat maximum approaching the free B
gas transition temperature as the magnetic field is redu
The results of Sec. IV may be used to study this analytica
Although we did not show it, it is straightforward to sho
that the derivative of the specific heat becomes discontinu
asB→0, exactly as in the case for the free Bose gas. Sim
remarks apply to gases in other dimensions.

We also studied the behavior in large magnetic fiel
Here we found that the specific heat for a gas inD spatial
dimensions looked like the specific heat for the free gas
D22 spatial dimensions over a range of temperatures. O
the temperature becomes too large, this effective reductio
dimension disappears.

By using the Mellin-Barnes integral transform we we
able to obtain a number of analytical approximations. A
though, forD>5, it is not possible to solve for the critica
temperature exactly, it is possible to obtain good estima
when the magnetic field is weak. These approximations
s.

v.

am
ro
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g-
ee
at
ble
tic
h,
e
d.
.

us
r

.

n
ce
in

-

s
n

then be used to study the Meissner-Ochsenfeld effect.
were also able to obtain reliable approximations valid at
free gas condensation temperature. As a by-product, our
culations showed exactly how the chemical potential v
ishes asB→0.

The most obvious way that the calculations given in t
paper should be extended is by the inclusion of Coulo
interactions among the charged particles. Clearly this is
sential before it will be possible to study Bose-Einstein co
densation of charged particles in a reliable way. Given
recent experimental advances in the cooling and trappin
atomic gases, it may become increasingly important to st
this problem for trapped ions. A less pressing extension
our work is to relativistic charged particles. Daicic and c
workers @7,9# performed a study of this already in variou
cases; however, it would be easily possible to extend
analysis of our paper to obtain the specific heat for the fi
time.
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