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The statistical mechanics of a system of nonrelativistic charged particles in a constant magnetic field is
discussed. The spatial dimensi@nis arbitrary, withD=3 assumed. Calculations are presented from first
principles using the effective action method. Epe5 the system has a phase transition with a Bose conden-
sate. We show how the effective action method deals in a very natural way with the condensate, and study its
role in the magnetization of the gas. For large values of the magnetic field we show how the magnetized gas
in D spatial dimensions behaves like the free Bose g&-#® spatial dimensions. Even though e 3 the
magnetized gas does not have a phase transition for any nonzero value of the magnetic field, we show how the
specific heat starts to resemble the result for the free gas as the magnetic field is reduced. A number of
analytical approximations for the magnetization and specific heat are given, and compared with numerical
results. In this way we are able to study in precise detail hovBthe) limit of the magnetized gas is achieved.
[S1063-651%9908211-2

PACS numbd(s): 05.30.Jp, 03.75.Fi

I. INTRODUCTION II. BOSE-EINSTEIN CONDENSATION
WITH NO EXTERNAL FIELD

One system which has received considerable attention

. . . In this section we wish to review very briefly some of the
consists of charged spinless bosons in a homogeneous m

151 @ an 5sic properties of the free Bose gas. The spatial dimension
netic fml_d. In|_t|al work on the nonrelativistic cag&] was il be arbitrary. Although there may be no direct physical
substantially improved on by Schafrofl], and was then gjevance to cases with>3, it is still instructive to study

generalized to dimensions other than three by NIB.  these cases because the nature of the phases transition differs
More recently, several detailed studies have been made of &y the D=3 situation. It also allows us to make contact
ideal system of nonrelativistic charged bosons, both numeriyith previous work forD # 3. ForD = 3 the analysis is stan-
cally [5] and from a theoretical point of view in both t46]  dard textbook materia[18—21. The absence of Bose-
and three[7—-10] dimensions. Also, a detailed study of the Einstein condensation wheB=2 is also widely known
boson gas in three dimensions with trapping harmonic poterf22 3. Spatial dimensiond >3 have also been studied
tials and the presence of a magnetic field has recently bed3,24.
made using the path-integral formali$fi]. The behavior of We will consider an ideal gas dfl spinless bosons con-
the relativistic case has also been discug&eti?—14. fined in a large box of volum& in D spatial dimensions.

The outline of our paper is as follows. In Sec. Il we give The infinite volume limit will be taken with\/=N/V fixed,
a brief description of the free Bose gashnspatial dimen- as is conventionally done. The energy levels of the system
sions. The purpose of this is to allow us to later compare thé&re
analogous results for the magnetized gas to these free field
ones. Section Ill presents the effective action method, and 1 27n; |2
and applies it to the magnetized gas. We concentrate initially o ( ) 2.9
on the specific heat, and show how the presence of the mag-
netic field alters the behavior from that found for the freepefore the infinite volume limit is taken if we impose peri-
gas. We study numerically what happens for large and smaidic houndary conditions on the field. We #et 1 through-
magnetic fields. The reason for concentrating on the specifigut the paper. In Eq2.1), nj=0,+1,+2, ..., andL; is the
heat is that the specific heat maximum can be used as |angth of the box in théth direction. In Sec. 1l we will show
signature for Bose-Einstein condensation in cases whergow the effective action formalism can be used to study this
there is no phase transition. This was used by PaktiBhin problem(see Refs[8,25,2§ for reviews. For now we stick
finite volume systems, and more recently for confined Bosavith the conventional thermodynamic expressions.
gaseq 16,17. Results are also obtained for the magnetiza- The internal energy is given by
tion. In Sec. IV we describe how it is possible to obtain
analytical results for the critical temperatupghen D=5),
the magnetization, and the specific heat when the magnetic U:Z .
field is weak. We are able to analytically confirm the numeri- m (efEn~r—1)
cal results concerning the limB—0. For theD =3 gas we
give approximations valid at the critical temperature for freewhereu is the chemical potential, angl=T ! in units with
Bose gas(Previous approximations were only valid for tem- the Boltzmann constankg=1. The grand canonical en-
peratures larger than thjs. semble is used here.

n;

(2.2
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By taking the infinite volume limit, we can replace the
sums in Eq(2.2) overn; with integrals. After expanding the
denominator of Eq(2.2) in a geometric series, and using Eq.

(2.1) for the energy levels, the integrals owgrmay be per-
formed with the result

D m D/2
U= iﬁv(m) Li(p+2yd €°~]. 2.3

We have defined the polylogarithm function,[2] by

* k
z
Li = —. 2.4
lz)=2 (2.4
We note the propertyassumingp>1)
Lip[1]=Zr(P), (2.9

where{r(p) denotes the Riemanh function.

2 N 2/D
0_(F) — ol - (2.11
ViR E)

For T<T, the chemical potential remains fixed@at0. Itis
easy to see that Eq2.10 only holds forT>T,. WhenT
<T,, the specific heat may be evaluated from Ej8) by
setting the term with 8.)’ to zero and als@ to zero. This
results in

D+2
Cv_(BO)D’ZD(D+2) R 2
Nois

4 D
Rl
for T<T,.

The two expression$2.10 and (2.12 may be used to
compute the specific heat for all temperatures, and also to

(2.12

The essential feature of Bose-Einstein condensation as gudy the behavior & =T,. It is easy to see from the poly-
phase transition is exhibited in the behavior of the specifiqogarithm function(2.4) that if p<1, Li[z]—» asz—1.

heat. The specific heat at constant voluBgis defined by

cvz(% =-p2 %) . (2.6
V,N V,N
The particle numbeN, given by
m D/2
N=V(m) Liprle?], (2.7)

is held fixed when computing the derivative in £g.6). The
chemical potential is not fixed. From Eq2.3) and(2.6) we
find

D(D+2)
7 Li(p+2yd €]

m |\ D72
27 B

cvzv(

. (2.9

D .
- 5,3(:3#)' Lips €]

Here’ denotes the derivative with respect 8 holding Vv

andN fixed. To calculate gu)’ we differentiate both sides

of Eq. (2.7) to give

D Lipsal efr]

Bl = 28 LiD—2)eP ]’

(2.9
Substitution of Eq(2.9) into Eq.(2.8), and use of Eq(2.7),
shows that

C, D(D+2) Lip+2yd€P*] D? Lipy[ef*]

N 4 Lips[e?#] 4 Lipalefr]
(2.10

If we confine ourselves t®&=3, as we do for the rest of

the paper, then a critical temperaturg can exist at which
the chemical potentigh=0. From Eq.(2.7), we find

This means that the second term of E8.10 vanishes as
pu—0 for D=3 and 4, but is finite foD=5. Thus the spe-
cific heat is continuous &= T, for D=3 and 4, but discon-
tinuous atT=T, for D=5. The discontinuity foD=5 is
easily computed in terms of Riemaignfunctions. The con-
tinuity of C,, for D=3 is well known[18-21]. The behavior
for D>3 can be found in Ref§23,24].

IIl. BOSE —EINSTEIN CONDENSATION
IN A CONSTANT EXTERNAL MAGNETIC FIELD

When a magnetic field is applied to a gas of charged
bosons in three spatial dimensions the energy spectmim
the infinite volume limi} contains a discrete harmonic-
oscillator-like part as well as a continuous part. The discrete
part is just the Landau level quantizatipa7]. For D>3
there may be a number of discrete components because the
magnetic field is not described by a vector, but by an anti-
symmetric tensor with more than one independent compo-
nent[28]. For simplicity we will restrict our attention to the
case of only a single nonzero component in the present pa-
per. We wish to provide a similar treatment to that for the
free Bose gas when a nonzero magnetic field is present. In
particular we will study the specific heat, and see how the
presence of a magnetic field alters the behavior from that
found for the free Bose gas in Sec. Il. Also we will compute
the magnetization and study the Meissner-Ochsenfeld effect
in detail. The formalism used is the effective action method
as reviewed in Ref§25,26. This formalism allows the non-
zero condensat@f there is ong to be treated in a very natu-
ral manner.

A. Thermodynamic potential and phase transitions:
General formalism

The thermodynamic potential is usually defined by

1
QT#):E 2 In[1—eP(En—en)], (3.1)
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However, in the effective action method there is another terny nonzero value foW (q_; is constant for the free Bose gas
present if there is a nonzero condensate described by a backssociated with this phase transition is a growth in the num-
ground fieldW. This is ber of particles in the ground state.

For some systems it is possible to have a sudden growth
in the occupancy of the ground state without a phase transi-
tion. In this caseu never reaches the critical value at,
__ o but instead approaches it asymptotically. The speed at which
HereDV =VW¥ —ieAV is the usual gauge-covariant deriva- the ground state particle number builds up depends on how
tive. The complete thermodynamic potential is fastu approacheg. . Becauseu never reachegc we have

Q=004 0 3.3 ¥ =0, and no symmetry breaking. As we will see below, for
T#0- ' a charged Bose gas in a constant magnetic field the spatial

(Actually, if we are interested in the dynamics of the mag_dimensionD determines whether or not a phase transition
netic field there will be an additional term involving a Max- 9CCurs.

1 —
(0) — Dyl _—_ 2_ 2
QO jd X{Z IDY|*—eu|¥|*;. (3.2

well action. We will consider this in Sec. 1l D belo. We can use our expressid8.3) for () to find the total
Given the thermodynamic potential, all quantities of interestchargeQ, since Q= —4dQ/du with V, B, 8, and¥ held
can be calculated. fixed. It is convenient to write
The presence of a condensate is signalled by a nonzero
value for¥. This is associated with symmetry breaking, as Q=Qo+Qu, (3.10
discussed in the relativistic cag29,30. In our case¥ must  \\here
satisfy
0O _

o 1 Qo= — e[ dxiF=elci? @1

—=0=-——D?¥V+euV. (3.4 I

SV 2m

o if we use Eqs(3.2) and(3.9), and
We can solve this by expanding(x) in terms of the sta-

tionary state solutions to the Schlinger equation: 0,—— aT#OI (3.12
-1 M
— 2 =
2m D1 (X)=Enfn(x). @9 From Eq.(3.1), we find
If we write 1
- Q1=e§ —[eB<En—em_1] . (3.13
V(=2 Cafn() (3.6

If we can always solv&)=Q, for u for all temperatures,
for some coefficientC,,, and assume that the set of solu- then W' =0. There is no condensate, symmetry breaking, or

tions f,(x) forms a complete set, then E.4) results in phase transition in this case. If it is not possible to sdve
B =Q; for u, then we must hav€,#0 and find a nonzero
0=(En—eu)Cn. G7 Value forw.
We will define a critical value ofx, sayuc, by

B. Thermodynamic potential: Constant magnetic field

euc=Eo, (3.8 The formalism outlined in Sec. Ill A will now be applied

whereE, is the lowest energy level. i< uc, then the only o the D-dimensional charged Bose gas in a constant one-
solution to Eq.(3.7) is for C,=0, which corresponds W  component magnetic field. We will assurde=3 here, and

=0. There is no condensate in this case associated with syn‘?jck the magnetic field in the direction. It is possidle to
metry breaking and a phase transition. Howevejifcan solve Eq.(3.5 for the energy levels and corresponding

reach the valug.c defined in Eq(3.8) for some temperature eigenfunctiond27]. We have(choosingf=c=1)

Tc, thenCy in Eq. (3.7) is undetermined and we can have a D 2
nonzero condensate described by E..=|n+ E + i 2 ZLk' 3.1
=\t pleton 2 ) G

¥ 0= Colo(X)- 39 where n=0,1, ... labels the Landau level, and;=0,
The temperaturdc at which u=puc is called the critical *1,... if weimpose periodic boundary conditions on a box
temperature. as in Sec. Il. We have defined

For the case of the free gas considered in Sec. Il we have

Eo=0, so thatuc=0. The critical temperaturé&: is then _eB
the value of the temperature at which the chemical potential “Tme (3.19

vanishes, as stated earlier. If the spatial dimenfien3, a
critical temperature exists and signals a phase transition witfihe energy leve(3.14) is degenerate with degeneracy
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eBLL, From Eq.(3.12), using Eq.(3.24), we have
9= 27 (3.16 D/2
= V(i) iE [-D,0]
As in Sec. Il we will be interested in the large box limit Qe 2mB)  ouTH T
with L;—o0. In this limit we can replace the sums over D/2
resulting when Eq(3.14 is used in Eq(3.1) with integrals. =e\<— x3,[2—-D,0]. (3.25
A change of variables gives 2w

Whether or not a phase transition occurs is determined by the
- convergence or divergence Bf;[2—D,0] ase—0. If this
(2m)P~2 sum diverges as—0, then we will always be able to solve
Q=Q, for . As discussed in Sec. Ill A this means that
there is no phase transition. From Eg§.23 it is easy to see

. . . .. that 3;[a,0] diverges ase—0 for a=—2. With a=2
This may be evaluated by expanding the logarithm in |ts_D, this means that there is no phase transitionor 3

Taylor series, and then performing the integral okeWe and 4 dimensions. Fop=5, 3,[2—D,0] converges as

_eBV ” f dP~2k
T#O_zﬂ_ﬁ &

XIn{1— e Aln+ l/2)w+(k2/2m)—e,u]}. (3.17

find —0, and there is a phase transition. In this cése, for
m \D2 * | _Di2g-1Bl(w/2)—eu] D=5) there is a nonzero condensate characterizedVby
QT¢0:_wV<_> 7E0
2 = _ o Bw _
mh =t (1-e ) (3.18 For D=5 we may use Eq3.9) to find V. If we choose
' the gauge

At this stage it is useful to define a dimensionless tem-

perature. We define A;=—By, Ay=---=Ap=0 (3.26

X=fw. (3.19 for the vector potential, then

X is seen to be the ratio between the energy gap between fo=ae (e8 (3.27)
successive energy levedsand the thermal enerdigT. The
lowest energy level from Ed3.14) is Eq o= w/2. From Eq.
(3.8), the critical value foru is

is the eigenfunction corresponding to the lowest endfgy
=w/2. a is a constant chosen to normalizg Q) is found

by using Eq.(3.9) with Eq. (3.27) in the general expression
(3.2). We will return to this when we discuss the magnetiza-

e,uc=§. (3.20  tion in Sec. Il D.
We will define a dimensionless chemical potentiaby C. Specific heat
The internal energy is given by =(d/dB)(BQ) with
ep=w %_8)_ (3.21) V, o, andBu held fixed. Using Eqs(3.1)—(3.3), we find
D 1 €I 2 J
A phase transition is characterized by a critical temperature U= | d®| 5 [DW|5f + %(ﬂlwo)- (3.28
Tc at whiche =0. Expressiori3.18 may be written in terms
of the dimensionless variablesande: The first term accounts for any nonzero condensate, and the
second term is easily seen to be
m \DR2 * |~ (D2)glex
Qrso=—0V 277,3) =1 (1-e ™) (3.2 I(BLr20) _ En (3.29
<9B n [eB(EnfeM)_ 1] ' ’

It is convenient to introduce some compact notation for the
class of sums we will encounter in order to simplify formu- which is the usual expression for the internal endrpe Eq.
las. Let (2.2) with a different definition foru]. With Egs. (3.5 and
(3.9), we find
*° Ia/2eflx(s+5)

Ek[a,é\]zg PPV (323) _ ) i
=1 (1-e™™) U=Eq|Co +(9IB(59T¢0)- (3.30

If Eq=0, then the contribution fronf2(®) to the internal
m \ P2 energy vanishes, and the internal energy is given by the stan-
m) 24, —-D,0]. (3249 dard expressiofB3.29. This is the situation for the free Bose
gas discussed in Sec. Il. For the constant magnetic field,
Various thermodynamic quantities involve derivatives of theEy= w/2, so that if##0 we must include the condensate
thermodynamic potential. We will initially consider the contribution to obtain the correct expression for the energy.
charge. If we use Eq.(3.11), then Eq.(3.30 may be written as

With this notation we may write Eq3.22) as

Q1= —0V
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QO 2.5
U=—— e IB(,BQT#o) (3.3) D=5 (critical line)
With Eq. (3.29) for 1., and differentiating with respect to 207
B, keepingBu, w, andV fixed, results in D=6 (critical lin)
B .15
A BQ120) m |\ P72 x3,[2-D,0] g
B oV 27 X2[2-D,1]+ 2 Bo D=7 (critical line)
1.0
n (D_Z)Ezl[_ D-O]] . (332 D=4 (maxima)
0.5 .
Noting Eq.(3.25 allows us to write this as £l
d Q m | P2 0.0 | | | | T T | T T |
B(,BQHO) o toVio— 278 x%,[2—-D,1] o 1 2 3 4 5 6 7 8 9 10
w
(D-2) .
+ >.—D,0];. (3.33 FIG. 1. ForD=5, this shows the value 8- compared to the
2 free Bose gas critical value @f,. ForD =3 and 4, because there is

no critical temperature when a magnetic field is present, we have

Substitution of Eq.(3.33 back into Eq.(3.31), and noting plotted the inverse temperature of the specific heat maximum in

from Eg. (3.10 that Q=Qy+Q4, where Q is the total

charge, results in units of o.
e DI2 creasing dimension. In all cases where a phase transition
U=—+oV ) [XEZ[Z—D,l] occurs, the critical temperature is lower than the result for
2e 2mp the free Bose gas as observed in R&t].
(D-2) Let C, denote the specific heat far>Tc, andC; be
( 5 ) 4J—D 0]] (3.349  the specific heat fof <T.. Using Eq.(3.34 we have, after
some calculation,

The expression for the internal energy we have just obtained m D2
[Eq. (3.34)] holds whether there is a nonzero condensate C>—xv<2 ,3) {2x223[4—D,2]+x222[4—D,1]

(¥ #0) or not. In cases where a phase transition does occur,

the role of the condensate is crucial for obtaining the correct D(D—2)
expression for the internal energy. If we neglected the con- +(D—-2)x2,[2—-D,1]+ 2 >, —-D,0]
tribution coming fromQ(?), then Eq.(3.34 would haveQ,
in place ofQ. This would then lead to an erroneous expres- x(D—2)2,[4-D,1]3,[2—-D,0]
sion for the specific heat, sin€gis fixed wherea®); is not. - S.[4-D,0]
The specific heat at constant volume was defined in Eq. !
(2.6. The quantities held fixed ar&/, Q, ¥, and o x*(3,[4-D,1])*> (D-2|%(24[2-D,0])?
=eB/m when the differentiation is performed. This means B 3,[4—D,0] T2 3,[4—D,0]
that the first term in Eq(3.34) makes no contribution tg,, .
Just like the free Bose gas discussed in Sec. I, we must (3.36

distinguish between the expressions above and below the t
critical temperature if there is a phase transition. Ber5,
the critical temperatur@. is defined by

heor T<Tc we havee=0 fixed. (Equivalently, u=w/2 is
fixed) The result of this is tha€; is given by

D/2 - ( m )D/Z ,
xc2,[2-D,0]|,_o . (339 Co=xViz 5 |& 34[4-D,2]

X:XC

m
Q= eV( 7 fe
+x23,[4—D,1]+(D—2)x3,[2—D,1]
Herexc=Bcw with Bc=T¢!, and the sun®,[2—D,0] is
evaluated withe=0 andx=x¢. Unlike for the free Bose b(b-2)
gas, it is not possible to solve fdic analytically. We will 4
return to an approximate evaluation ©f in Sec. IV. We
have solved Eq(3.35 numerically to findTc. The results By comparingC; in Eq.(3.36 with C; in Eq.(3.37), it can
for small values ofv are shown in Fig. 1. As expected, when be seen that whether or not the specific heat is continuous at
w—0 we haveTc—T,. the critical temperature is determined by the behavior of
For small values ofv, B¢ is close toB, (an approximate 24[4—D,0] ase—0. The two expressions will only agree if
analytical expression will be given in Sec. )IVAs the 3,[4—D,0] diverges in this limit. From definition(3.23
strength of the magnetic field is increased, the deviation ofhis only happens fob =5 and 6(recall that we are assum-
Tc from Ty becomes more pronounced, but lessens with ining D=5 here so thal . existy. We conclude that the spe-

xEl[—D,O]] (3.37

=0
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tion temperature for the free gaéThe result inD=4 is
qualitatively similar) As the magnetic field is reduced the
curves for the specific heat tend toward the free-field result.
The maximum in the specific heat becomes sharper, and the
temperature at which the maximum occurs tends toward the
value T, as the magnetic field is reduced. FBr: 0, al-
though there is no phase transition characterized by a critical
temperature and a nonzero condensateB &s reduced the
specific heat starts to look more and more like the free gas
result. We will look at this analytically in Sec. IV. A8
—0 (or T—x) the specific heat foD =3 approaches the
classical Maxwell-Boltzmann result of 1.5.
The behavior of the specific heat Bss increased is also
of interest. Increasing the value & tends to reduce the
specific heat maximum and to broaden the curves. In fact, for
large values 0B, if we examine Fig. 2 it can be seen that the
curves approach the value §fasB is reduced before rising
sharply to the classical result &f This demonstrates that the
specific heat for the gas with =3 resembles the specific
of the total number of particles as a function of the inverse tem-?'Ieat for the lfr(_ae gas W't'?: 1 in a strong magn?t'c flpfld'
perature in units 0B, whereB,=T, %, with T, given in Eq.(2.11) The valge_ of; is the cIa_ssmaI v_alue for the one—dlmen_smnal
for D=3. For comparison, the free gas result is also shown ( 98S- Th|§ is to'gally consistent with the_approach used in R_efs.
=0). [32,33, in which the leading behavior of thermodynamic
quantities was studied in a general setting by using the low-
cific heat for the charged Bose gas in a constant magnetiest energy solutions. AB is increased, the gap between the
field is continuous at the critical temperature =5 and 6, ground state and the excited states becomes larger; thus the
and discontinuous fob=7. leading contribution would be expected to come from the
In the case® =3 and 4, where there is no phase transi-ground state.
tion, € never vanishes. The specific heat is given by Eq. The results for the specific heat of the five-dimensional
(3.36 in these two cases for all temperatures. Witen 3 gas are shown in Fig. 3. In this case the specific heat for the
and 4 the specific heat is a perfectly smooth function offree Bose gas is discontinuous. Nevertheless, as the magnetic
temperature. field is reduced the specific heat curves approach the free gas
Graphs showing the specific heat fBr=3 and 5 are result. The peaks of the specific heat start to become sharper
shown in Figs. 2 and 3.0=5 is chosen to illustrate the and the slope of the curve steeper. The classical Maxwell-
higher dimensional results, as one example where the fre®oltzmann result o8 is reached ag—0. Just as for the
field gas has a discontinuous specific heat. caseD =3, the gas exhibits a reduction in the effective di-
For D=3, the presence of the magnetic field is seen inmension for large values of the magnetic field. This time we
Fig. 2 to round off the familiar sharp behavior at the transi-would expect to find the specific heat curves looking more
and more like the familiar form for the specific heat of the
8] free gas in three spatial dimensions, and this is what is found
=0 if the numerical results of Fig. 3 are studied closely.

0.0 T T T T T ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
B/Bo

FIG. 2. This shows the specific heat at constant volume in unit:

D. Magnetization

Even though foD =3 there is no phase transition which
can be associated with Bose-Einstein condensation, by
studying the magnetization of the charged gas Schaf@jth
showed that the gas exhibited the Meissner-Ochsenfeld ef-
fect. The generalization to other spatial dimensions was per-
formed later[3-10,33. We will show how the formalism
described in Sec. lll A can be used to obtain the magnetiza-

tion. In particular, the role of the condensate for D=5
will be examined carefully.
The simplest way to see the effects of magnetization is by
15 2.0 25 3.0 studying how the field equations for electromagnetism are
B/Bo affected. To do this we must include a term in the thermo-
dynamic potential(3.3) for the electromagnetic field. We
FIG. 3. The specific heat at constant volume in units of the totaWill use Heaviside-Lorentz rationalized units as usual in
number of particles for the magnetized gas viltk5. The curves quantum field theory(A discussion of the various units and
are given as a function g8=T" 1 in units of B, rather thang.. how this alters the expression for the magnetization was
The discontinuous free gas result is labeled 0. given in Ref.[33]. Of course the physics of the situation

0.0 0.5 1.0
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should be independent of this arbitrary choid&/e add

1 S
Qem:f dDX(ZFijF”—J'extAi) (3.39
to Eqg. (3.9, whereF;; = d;A;— 9;A; is the field strength ten-
sor describing the magnetic field, adg,, is the externally
applied current which is responsible for setting up the mag
netic field. The complete thermodynamic potential is
Q=0+ QO+ 01, (3.39
whereQ(© and Q.. are given in Eqs(3.1) and(3.2).
Variation of () with respect to the magnetic fiel; re-
sults in

gHI =L, (3.40

where

ij ij o 0
H :F +2¥(Q +QT¢O)'

1]

(3.4)

H' is the D-dimensional analog of the usual vectdrin
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Recalling Eq.(3.25, we have
1 Qy el m|\P?
MT*°“%V*E(%)
X{%4[—D,0]-x3,[2—-D,1]}. (3.4

In cases where no phase transition occurs, we Haye
=Q, so that the first term of Eq3.47) is constant. Also if
V=0 thenM(©=0, so that the total magnetization is given
by Eqg.(3.47) with Q;=0Q.

When a phase transition does occur we nsE8. With
our gauge choic€Eq. (3.26)], and using Eq(3.2) for Q)
we find

e’B —
MO =— m_\/f dey2|\If|2. (3.48

¥ was given by Eq(3.9) with Eq. (3.27). It is easy to show
that

three-dimensional electromagnetism. As explained earlier it

iS necessary to treat the magnetic field as a tensbr#f3.
For more details of this analysis, see R&6].

We have treated the magnetic field generally in Eqgs
(3.38—(3.41). Specializing now to a single component field
of strengthB(F1,= —F,;=B), Eq. (3.41 can be written as

H=B-M, (3.42

where

% QO
M= —=(00+0r), (3.43

and H'?= —H?'=H. Equation (3.42 is the conventional
B-H relation found in three spatial dimensions, but with the
notation defined here it can be seen to hold forfallM in

1
J dey2|fo|2=—ZeB, (3.49
which results in
: e Qo
0)—_ _— 2 _ Y
M 2mV Col 2mV (350

after using Eq(3.11). We may now combine Eq§3.47) and
(3.50 to read
e ( m

Q. efm
2mV.  m\ 278

M

D/2
) {21[—D,0]—x2,[2—-D,1]},
(3.52
sinceQ=Qy+ Q; is the total charge.

The result in Eq.(3.51) is the exact expression for the
magnetization, which holds even if there is a phase transi-

Eqg. (3.43 is the magnetization. This approach is seen tation. Had the condensat¥ been ignored, we would have
avoid any ambiguity between what Schafroth called the actebtained Eq(3.47) rather than Eq(3.51). In the true expres-

ing and microscopic fields.

We can now splitM in Eq. (3.43 into two pieces in an
obvious way. The derivative in Eq3.43 is a functional
derivative, and becaud® is a constant for our problem we
can define

o_ 1 00©
M= — vV B (3.49
1 9Q740
MT#O__V B (3.49
Mg is easily computed, using E@3.24), to be
e/ m \DPR
MT;&OZE(W) [21[_[),0]
X
—521[2—D,0]—x22[2—D,1] . (3.49

sion (3.5)) the first term is constant, whereas in E£§.47)
the first term is not constant if there is a phase transition.
Thus neglect of the condensate 105 would lead to an
erroneous result for the magnetization.

The dimensionless magnetization =mVM/Q is shown
for D=3 in Fig. 4. The zero-field spontaneous magnetization
plotted on the graphs is of the form given originally by Scha-

froth [2],
o

(with D=3) and it can be seen that as the fi@d-0, this

limit is recovered. As the number of dimensions increases,
the diamagnetism due to macroscopic occupation of the low-
est Landau level in the low temperatui@gh B/ 8,) region
becomes more pronounced. The general behavior of the
magnetized gas is similar in cases when a phase transition is
absent D<5) or presentD=5).

T D/2

To

Q
M=— m (3.52)
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A. Critical temperature

For D=5 the magnetized Bose gas is characterized by a
well defined critical temperaturd - which satisfies Eq.
(3.35. It is not possible to evaluat&: in a closed form.
However, we can use our asymptotic expansion3gf2
—D,0] to obtain an approximate result for weak magnetic
fields. We have

ol (7] 5l )
Q=e 278 Rl T 5 RIS T
(4.2

if only the two leading terms are included. This assumes
Xc<<1. With the free Bose gas critical temperature defined

by
0.0 05 10 15 20 25 3.0 D2
m D
a8 o=V zag,) 3] “3
FIG. 4. The dimensionless magnetizatidti=mVM/Q for the )
charged Bose gas in three spatial dimensions. we find
Bc\P? D\ xc [(D-2
IV. ANALYTICAL EXPANSIONS 0= 1_(E R e B CY]

So far we have presented mainly the results obtained from
numerical evaluations of sui(3.23, since it is not possible Sincexc is assumed small we see that= ;. It is easy to
to obtain exact results. However due to the form of the exshow from Eq.(4.4) that
ponential involvinge™', in order to obtain reliable numeri-

cal results directly from Eq(3.23 it is necessary to include (D—2

an increasing number of terms aslecreases. In this section 1°Rl 2 ] eB

we will discuss a reliable method for obtaining approximate Te=To— D /DI m (4.9
analytical expressions for various situations wheamdx are { R( >

small by finding asymptotic expansions B[ «, 5].
The basic method we will use here involves the Mellin-, leading order ineB/m. This shows thaffc—T, as B
Barnges contour integral representation for the exponential g Furthermore, for a fixed charge density, the critical
function: temperature is lower when a nonzero magnetic field is
' present. This is consistent with our earlier numerical results.
V= fcmﬂl“(a)v“’ 4.1 A cruder estimate of - was given in Ref[31], which had
c—iw 27I ’ ) the same linear behavior as in Eg.5 but with a different
numerical factor in front ofB. Our result[Eq. (4.5] is a
Herec is a constant with Re>0, so that the contour lies to special case of the multicomponent magnetic field presented
the right of the poles of the gamma function. This is essen!" Ref. [26]. i ) . o
tially equivalent to the method used by Robins@4] to It is possible to improve on the linear approximation of
obtain asymptotic expansions for the Bose-Einstein funcEd- (4.5 by working consistently to higher order in the ex-
tions. It was used for the three-dimensional magnetized ga@ansions. Itis necessary to deal with=5 and 6 separately
by Daicic and Franke[9], and was used to discuss Bose- ffom D>6 because of the order of the terms retained. For
Einstein condensation in a harmonic oscillator potential inP=>5, we find
Ref.[17]. There are various ways in which E@.1) can be

. . . 3 3
used to obtain expansions over a rangex@nd e, as dis- §R<— §R(—
cussed in Refd.17,26. We will content ourselves with the Tc_, 172 X 1 2 324 O(x2)
simplest presentation here. To = 5 [5\7° g2 [5\7° o
The basic method is to use E@.1) to convert Eq(3.23 gR(E §R(§
into a contour integral. The contour may be closed in the left (4.6)

hand side of the complex plane, and the result evaluated by
the residue theorem. The even and odd spatial dimensioris worth remarking that the result given by Mp4] is only
differ somewhat in the pole structure of the integrand. Thecorrect if it is taken to linear order iB.
net result is an asymptotic series L[ «, 5] which can be We can also obtain an approximate expression for the
used to approximate the specific heat, magnetization, ancharge in the condensate whé&s<T; for D=5. WhenT
other thermodynamic quantities. The details of these calcu=T¢ we havee=0, so Eq.(3.29 gives us
lations are lengthy and only the relevant results will be pre- /2
sented here. The reader interested in details can consult Refs. _ m _

Ql_e 27TB le[z DYO:”S:O'

(35,36, .7
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numerical result, and our approximatié.10 for the case

1.0 . D=5. It can be seen that E4.10 is very close to the true
0.9 result.
0.8 -
B. Magnetization for D=5
077 The magnetization may be evaluated using B95)). It
06 is necessary to distinguish the cag®s 3 and 4 for which
@_5_ no phase transition occurs from=5. We will deal with

D=5 in this section, leavind =3 and 4 until later. With
047 D=5 we must deal witlT =T andT<T since the chemi-
03— cal potential is different in the two cases. For simplicity we

will only give the expressions foF<T.. WhenT=T; we
8= havee #0 and the results are more complicated. In addition,
0.1 the expansions break down oneegrows too large.
o For T<T. we use Eq(3.51) with £=0:

¥ I
0.0 0.5 1.0 B}Sﬁ 2.0 2.5 3.0 V- Q . e m D/2
’ - 2mV ml\2#B

FIG. 5. The ratio of the charge contained in the ground state X{El[—D,O]—Xzz[Z—D.l]}|8:o- (4.12

over the total charge faii) the free gagEq. (4.11)], (ii) the exact
result (4.9), and (iii) the approximation(4.10 (for D=5 andw  This can be rewritten if we eliminatex(/27)°’? using Eq.

=1). (3.35. We find
By using Eq.(3.35, which defines the critical temperature . Q T \P"?
Tc, we find (noting x= Bw, Xc= Bcw) M=- 2mv —2 Te
~[xc|P7?"23,[2-D,0]|, =0
Qi=Q| EE— (4.9 le[_Dio]_XEZ[Z_D!lﬂs:O

xC21[2— D,0]|;(9_=X0,
e

From Eq.(3.10, we find that the charge in the condensate ISIt is now a straightforward but tedious matter to expand the

(D-2)12 _ sums.
Qo=0 1—(X—C) % . (49 For D=5 the asymptotic expansion of the magnetization
X 3.[2-D,0]| e=0 is given by
X=XC
This result is exact. If we now use the approximate analytical Q T\52 [ T)\52
expressions fok;, we obtain M=— >y _(T_) — (T_)
C C
D-2
xc|P2 1 (x| PP Rl 3
Q=0 1=\ —3l%] —7pr XX - gR(_)
(nl = X Xc 2
R 2 X 5—3 —5+ . (414)
i e

It is worth remarking that the accuracy of any of our approxi-By taking B—0 we are left with the spontaneous magneti-

mate expressions can be increased by simply including MOorevion
terms.
From Eg. (4.10, we see that asv—0 becausexc/x Q T)\572
=T/Tc, and we know thaffc—T,, we recover the free M(B—0)=-5_"¥ 1—(1-—0) (4.19

Bose gas result

sinceTc— Ty in this limit. This is the five-dimensional ver-
4.19) sion of Schafroth’s result, and agrees with Ma\l. When
' B+#0 there are corrections to the Schafroth form as shown
by the third term in Eq(4.14). There are two sources for
The term in Eq.(4.10 which involvesx—xc represents the these corrections. The first is that Bk 0 andTc# Ty. The
lowest order correction to the free field result in a weaksecond is that the asymptotic form bf has higher order
magnetic field. terms present. The fact thll does not vanish aB—0
In Fig. 5 we plot the free gas resiiEq. (4.11)], the exact shows that the Meissner-Ochsenfeld effect exists.

T D/2
o[z |
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We can also compare our result with that given by May 7 3 ,[5
[4]. To do this we must replack. in Eq. (4.14) with To. We c 35§R(§> §R(§) —25§R(§)
\%
E

will only work to first order in the magnetic field and use Eq.

: : N 3 5
(4.14. It is easily shown that 4§R(§ R(i)
(3 257T1/2X1/2 gH(%’g) gR( ;)
Q T\52 1/ T1\52%R 5 n - +0(x3?),
T omy (To> 3<T0) 5" 44%(—)
§R<§ 2
(416  while belowT¢ Eq. (3.37) must be used, and hence
7 ,(5 3
This agrees with May’s result, where a different method wasc_ 35§R(§) X( 15§R(§) _35§R<§) Rl 5
used. There are two comments to make here. The first is that- = ot 5 +0(x%?).
had we taken the expansion beyond linear ordex ithe 4§R(_> 8§§(—)
results obtained would not agree with that of May’s method 2 2
for reasons already mentioned. Second, care must be exer- (4.17
cised in using Eq(4.16 because we have assumeg T¢ in
its derivation. This means that E¢4.16 does not hold at D. Expansions forT near To
T=T,, as can be seen from E@.5). If we setT=T, in Eq. As noted in Schafroth’s original papg2] the approxima-
(4.1, we would conclude thaM was positive, leading to tion (for the three-dimensional gas
paramagnetic rather than diamagnetic behavior. This is o
clearly wrong. We will return to results fof =T, later. Mz_& 1_(1) 4.19
There is, of course, nothing wrong with takiig- T¢ in Eq. 2mV To ’
(4.14).

will break down whenT becomes too close t6,. This can
be substantiated by a direct numerical evaluatiotMoénd
C. Specific heat comparison with Eq(4.18), as we showed in Ref37]. The
Schafroth criterion for validity of Eq(4.18 can be derived

In a similar manner to Sec. IV B, analytical expansionsr{.n a simple manner, as described in REG]. An obvious
may be obtained for the specific heat capacities in the dime Juestion to ask is that if Eq4.18 does not hold ad be-

sions of interest to us in this paper. It is more convenient to! | i< th h imol L
express these results in the form they were given previousl%%mis ¢ osg o, dli tﬂt]a_re anotf_er smg_e dagproDxm_atlon d
i.e., as expansions of the rati®, /N. These expansions are 'Ck lcan ehus?] ' dlt? was |rds.t stuble y haICIr? an
constructed from the expression for the heat capdeither Frankel[9], who showed by expanding about=0 that the

At — _~RY2 g ; ~
Eq.(3.36 if above the transition temperature, or £8.37) if magneu;auori\/l- .CB » With ¢>0 a constant. This ap
below if] as well as that for the number dens[iybtained proximation was V"?‘“d for valqes G closer 10T, than Scha-
from Eq.(3.25 asN=Q/le] froth’s approximation, but still broke down a—Tj. In

For D=3 from Fig. 2, it can be seen that the chargedRef' [37] we showed how it was possible to evaluate the

Bose gas in three spatial dimensions does not exhibit a phag_g?rgnlet'iﬁ.t'on '? a temp"erature tr?r?gec}i \;Vhl'Chf't?fIUdéd it
transition with finite field, but approaches the zero field re-— dO. n |s|_secﬂ|10n WeIW'_ ptresent_ Ied' etai SD83|S resut,
sult in theB—0 limit. The maximum of the heat capacity is and generaiize€ the analysis 0 spatial dimenslonss.
always lower than the zero field limit, a fact which can  FOrD=3 the critical temperaturg, for the free Bose gas

clearly be seen from the analytic expansion is defined by
m 3/2 3
Q=e 278, Rl 5 (4.19

5
c, 15§R( E) 312

3
ST It |
4§R<§> 4@5@(2) gH(;g "2 whereBo=T, . ForB#0 we have
( m )3/2
> ! 3 =eV|5— —-1,0]. 4.2
+5W€R(§)§H(§,s)§H(§,s +0(x). Q=e 278 x2,[—1,0] (4.20

Equating these two expressions gives

The five-dimensional gas is the first to show the existence 32
of a phase transition, and as previously discussed in Sec. x2a[—1,0]= Xo {R 2/ (4.2
[l C, it is necessary to use different expressions for the heat
capacity above and below the critical temperature. For wherexy=Bow. The aim now is to solve this far when the
>Tc, this quantity is given by magnetic field is weak and is close toT, (meaningx is
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close toxp). Because we assume a weak magnetic field, we
may use the first few terms in the asymptotic expansion of

21[_1,0]:
Xo IR 2 ={Rr 5 + (X)L 518
1\/1
+ R E (5_8 X+ .- (422)

Higher order terms could easily be included to improve the

accuracy of the result.
Suppose that we concentrate first d=T,. Call the
value ofe at T=T,, &o. Then Eq.(4.22 gives us

1\(1
+7T_1/2§R<§)(§—80 Xé/z‘l‘-'- .

(4.23

0=4n| 520

(The next term is of ordek®2) If we let B—0, thenxg
= Bow—0. Thus aB—0 we must have,—a, wherea is
defined by

1
28

0={y . (4.24

The value ofa can be found numerically, with the resualt
=0.30272182.... We have verified this by solving Eq.
(4.21) numerically for decreasing values Bf and found that
e—a asB is reduced. Becausg=w(3 —¢) this result is
still consistent with the expectation that-0 asB—0. We
have essentially determined how fastvanishes a8—0.
For small, but nonzero, values 8f we can try to solve

Eqg.(4.23. In order to obtain a consistent expansion from Eq.

(4.23, it is fairly clear that we must have

Soza‘F alxélz-l— a2X0+ e (425)
for some coefficienta;,a,, ... which can be found by sub-
stituting Eq.(4.29 into Eg. (4.23 and working to a consis-
tent order inxq. It is easily shown that

1 1 . (3
Cn| 5:80| =~ 581X0 Cn| 5,8 +O(Xo). (4.26
Use of Eqgs(4.25 and(4.26 in Eq. (4.23 fixes
24 5
B IR > 1 s
al_ s 3 E a ( . 7)
7Ly E’a
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R| 5 1/2
~ 1/2 2 -2 4 _ i
e=a+ta;xg+ Xo 1 +--
77_1/2§ 2 a Xo
H 2’
(4.28
Consistency of this expansion requires
1/2
1-|—| <x3? (4.29
Xo

In particular, the approximation is good at X.

The approximation we have found fermay now be used
in the expressions for the specific heat and the magnetiza-
tion. For the specific heat 8t=T,, we find

sy suly
&2 k|2 g2 R\ 2
N 3 0

4§R(§)

2771/2§H
This shows that aB—0 the specific heat approaches the
free-field result affT=T,, confirming analytically the trend
we found numerically. It also provides an analytic proof that
for small xq, the presence of the magnetic field lowers the
value of the specific heat from the free-field value.
For the magnetization we fin@t T=T)

+0(xg). (4.30

28

1
6’7T1/2§H( - _,a

Q 2
M=~ 2mv 3 X"
ZR(E)
1
§H(§)
—2—= g—a+a2 Xot - - - (4.3D
§R<§

This provides confirmation of thi¥l = — ¢ B> magnetization
law of Daicic and Franke[9], but at a lower temperature
(and therefore the coefficient 82 differs from that of[9]).

In addition, we have computed the next order correction to
the leadingB2 behavior. It is straightforward to extend this
analysis to cases other thén=3 [35,36].

V. DISCUSSION AND CONCLUSIONS

This paper has studied the thermodynamic properties of
the ideal charged Bose gas in some detail. Spatial dimen-
sions withD=3 have been examined, since even for the free
gas it is known that the properties of the gas are sensitive to
the spatial dimension. The specific heat was calculated nu-
merically as well as analytically, for small values of the mag-

It should be clear how we can obtain an approximation fometic field. We also performed calculations of the magneti-
go to any order inx, by extending the procedure we have zation and showed how the effective action method could be

just described to higher order.
So far we have just concentrated on the evaluation af

used to account for the condensate wier5.
One motivation for our study was to understand in more

the single temperaturg,. Suppose that we now extend this detail the behavior of the magnetized gasioe 3. When a

to temperatures which are closeTg. By a simple extension
of the analysis just presented, it is possible to show

magnetic field is present, no matter how small, there is no
phase transition; however, when there is no magnetic field
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the system does exhibit a phase transition with a nonzerthen be used to study the Meissner-Ochsenfeld effect. We
condensate. On physical grounds we would expect that thergere also able to obtain reliable approximations valid at the
should be some sense in which the system in a small madree gas condensation temperature. As a by-product, our cal-
netic field should behave in almost the same way as the freeulations showed exactly how the chemical potential van-
gas. By examining the specific heat it is possible to see thathes aB—0.

as the magnetic field is reduced, the curves start to resemble The most obvious way that the calculations given in this
the specific heat for the free gas. So long as the magneticaper should be extended is by the inclusion of Coulomb
field remains nonzero the specific heat is always smoottinteractions among the charged particles. Clearly this is es-
with the specific heat maximum approaching the free Bosaential before it will be possible to study Bose-Einstein con-
gas transition temperature as the magnetic field is reducedensation of charged particles in a reliable way. Given the
The results of Sec. IV may be used to study this analyticallyrecent experimental advances in the cooling and trapping of
Although we did not show it, it is straightforward to show atomic gases, it may become increasingly important to study
that the derivative of the specific heat becomes discontinuoustis problem for trapped ions. A less pressing extension of
asB—0, exactly as in the case for the free Bose gas. Similabur work is to relativistic charged particles. Daicic and co-
remarks apply to gases in other dimensions. workers[7,9] performed a study of this already in various

We also studied the behavior in large magnetic fieldscases; however, it would be easily possible to extend the
Here we found that the specific heat for a gadDirspatial  analysis of our paper to obtain the specific heat for the first
dimensions looked like the specific heat for the free gas irtime.

D — 2 spatial dimensions over a range of temperatures. Once
the temperature becomes too large, this effective reduction in ACKNOWLEDGMENTS
dimension disappears.
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